
eltoo: A Simple Layer2 Protocol for Bitcoin

Christian Decker
Blockstream

decker@blockstream.com

Rusty Russell
Blockstream

rusty@blockstream.com

Olaoluwa Osuntokun
Lightning Labs

roasbeef@lightning.engineering

Abstract

Bitcoin, and other blockchain based systems, are inherently limited
in their scalability. On-chain payments must be verified and stored by
every node in the network, meaning that the node with the least re-
sources limits the overall throughput of the system as a whole. Layer
2, also called off-chain protocols, are often seen as the solution to these
scalability issues: by renegotiating a shared state among a limited set
of participants, and not broadcasting the vast majority of state up-
dates to the blockchain, the load on the network is reduced. Central
to all Layer 2 protocols is the issue of guaranteeing that an old state
may not be committed once it has been replaced. In this work we
present eltoo, a simple, yet powerful replacement mechanism for Layer
2 protocols. It introduces the idea of state numbers, an on-chain en-
forceable variant of sequence numbers that were already present in the
original implementation, but that were not enforceable.

1 Introduction

Bitcoin is the first and most successful cryptocurrency in the world. At the
time of writing Bitcoin had a market cap of over 150 Billion USD, almost half
of the market cap of all cryptocurrencies combined. However this success
comes at a cost: increased demand for Bitcoin and emerging applications
using Bitcoin not only as a speculative tool, but as a currency, have driven
up the transaction volume. Over time Bitcoin’s inherent scalability issues
have become more and more prominent, and may severely limit its ability to
function as a currency.

1

At its core Bitcoin relies on a replicated state machine, the blockchain,
to order operations, transactions, on its global state, the UTXO set, i.e., the
association of bitcoins to an owner. Transactions are verified and replayed by
each participant, called a node, in the network. This limits the throughput
of the network as a whole to the lowest throughput of any one node in the
network. Increasing the load beyond that throughput may result in nodes
unable to handle the load being pushed out of the network. It is therefore
safe to say that, with the current architecture, Bitcoin will be unable to
scale with increased demand, without losing its trustless nature and without
excluding some participants.

Recently a number of Layer 2 protocols have been proposed [3, 6, 7]
to address the scalability issues that Bitcoin, and other blockchain based
systems, are facing. The key insight of Layer 2 solutions is that not every
transaction has to be applied globally. Instead it is possible to locally nego-
tiate multiple operations among a smaller set of participants and only apply
aggregates of these transactions to the global state.

Layer 2 protocols are a form of smart contracts between a fixed set of
participants, that negotiate contract state changes locally, only involving the
blockchain in case of dispute or final contract settlement. These protocols
commonly consist of a setup phase, a negotiation phase and a settlement
phase. The setup phase involves moving some funds into an address con-
trolled by all participants, such that the participants have to agree on how
to distribute the funds later. The negotiation phase is the core of the pro-
tocols and consists of repeated adjustments on the distribution of funds to
participants. Finally, the settlement phase simply enforces the agreed upon
distribution on the blockchain.

It is paramount that all participants have the means to enforce the latest
agreed upon state at any point during the execution of the smart contract. In
Bitcoin smart contracts this is achieved by representing the latest state in the
form of a settlement transaction that aggregates any intermediate change.
During the negotiation phase the participants repeatedly negotiate a new
settlement transaction, invalidating any previous settlement transaction.

The general concept of renegotiating a settlement transaction among a
set of participants was already part of the Nakamoto implementation of
Bitcoin in the form of nSequence numbers in the transactions. Miners were
supposed to replace transactions with a conflicting transaction if it had a
higher sequence number. However, there was no way for this replacement
to be enforced, and miners would simply prefer transactions that paid the
most transaction fees. So if one party preferred an old state in which its
share of the funds was larger than its final share, it could bribe miners into

2

confirming the outdated state instead.
It is this lack of enforceability of replacements that ultimately proved

difficult to solve. With the nSequence number based replacements users
had to trust miners to only include the latest version, and, in case multiple
states were published concurrently miners could end up picking an old state,
because they simply didn’t see the replacing ones. The replacement strategy
is the major contribution of both Duplex Micropayment Channels [3], with its
invalidation tree, and Lightning [7], with its punishment based replacement.

In this paper we present eltoo, a novel protocol to update a negotiated
contract state, that invalidates any previous state, making them unenforce-
able. eltoo introduces the concept of state numbers, similar to sequence
numbers, but enforceable: by allowing a later state to respend any of the
previous states we defer the on-chain settlement until the last settlement
transaction is confirmed. In order to enable a later state to respend any of
the previous states we introduce the concept of floating transactions, i.e.,
transactions that can be bound to any previous transaction with matching
scripts.

We first present an idealized on-chain version to introduce the basic con-
cept, and then lift this on-chain protocol off of the blockchain. The on-chain
protocol introduces the basic idea of overriding a previous settlement, but
still confirms all states on the blockchain. Finally, the off-chain protocol
introduces floating transactions and with it the ability to skip intermediate
states.

2 Bitcoin Basics

At its core Bitcoin is a decentralized replicated state machine, and like any
replicated state machine, it has two fundamental primitives: a shared state
that is managed by the replicas and operations that are applied to the state
and modify it over time. The shared state of Bitcoin is the so called set of
unspent transaction outputs, the UTXO set. An output is a tuple of a value,
denominated in bitcoins, and a spending condition that determines the owner
of the value. The sole type of operation on the shared state in Bitcoin are
transactions. Transactions spend some output, i.e., remove them from the
shared state, by claiming them as inputs, and then redistribute the value to
new owners, creating new outputs specifying new spending conditions.

Transactions are broadcast to all other participants in the network, and
upon receiving a transaction a participant will validate the transaction. Val-
idation includes verifying that the outputs being spent exist, that the newly

3

created outputs do not have higher value than the spent ones, and that
the transaction is authorized to spend the outputs in the first place. If
the transaction is valid, each participant applies it to the local view of the
shared state, otherwise it is discarded. For consistency it is paramount that
all participants agree on the same validity conditions and that validation of
transactions is deterministic, otherwise the local view of replicas may diverge,
resulting in an inconsistent state.

The spending conditions in the outputs are expressed using a simple
scripting language, and they are fulfilled by a script in the inputs of the
spending transaction. Most commonly the spending condition of an output
simply asks for a valid signature of the spending transaction from a specific
public key, such that only the owner, holding the matching private key, can
authorize the transaction. In this common case the input script would then
simply push the signature onto the stack and the output script, executed
right after the input script would then verify the signature. Due to this
case being so common, the spending condition is commonly referred to as
scriptPubKey, and the input script is referred to as scriptSig. With
the introduction of segregated witnesses the terms witnessProgram and
witness were introduced, which serve the same purpose but are handled
slightly differently. Throughout this paper we will use the terms output
script to refer to witnessProgram and scriptPubKey, and input script
to refer to the witness or scriptSig.

The scripting language however allows for a wide range of scripts, ranging
from multisig transactions requiring multiple signers to authorize a transac-
tion, to cryptographic puzzles that need to be solved in order to spend an
output. Throughout this paper we will make use of a variety of scripts that
combine cryptographic puzzles and signatures to authorize transactions.

As a final building block, Bitcoin makes use of a blockchain to pre-
vent double-spends. Transactions are aggregated into blocks that are then
broadcast and chained together to build a blockchain. The specifics of the
blockchain are out of scope for this work, suffice it to say that the Bit-
coin blockchain guarantees that eventually transactions are confirmed, and
double-spends are resolved, by confirming one transaction and discarding all
conflicting ones. The process of confirming transactions may take minutes
to several hours to complete.

4

Setup Tu,1 Tu,i−1 Tu,i

Ts,0 Ts,1 Ts,i−1 Ts,i

Figure 1: Overview of the on-chain update protocol. The setup transaction
initiates the protocol. Each update transaction Tu,i invalidates the previously
negotiated settlement transaction Ts,i−1 (indicated by lighter color), until
finally Ts,i is not invalidated and settles the contract.

3 On-chain update protocol

Before lifting the protocol off the blockchain, making it a scalable off-chain
protocol, we first introduce the basic functionality in an idealized on-chain
update protocol. In the on-chain protocol all intermediate states are broad-
cast and confirmed on the blockchain. While not scalable the on-chain pro-
tocol introduces the intuition behind the off-chain protocol.

In the following we limit the description to the case of two endpoints
attempting to update an agreed upon state, i.e., the balance of each party
when settling. However, the protocol is trivial to generalize to any number of
parties, and different semantics, as long as the resulting transactions adhere
to the Bitcoin validity rules, e.g., size constraints.

The on-chain protocol follows the schema presented before, and has three
phases:

• a setup phase, used to allocate some funds to a 2-of-2 multisig address;

• a negotiation phase, consisting of the participants creating a chain of
update transactions that each reflect a state update;

• a settlement phase, during which updates are replayed on the blockchain,
until no new updates are available;

In the on-chain protocol the negotiation phase and the settlement phase
effectively overlap, as will be seen later.

3.1 Setup Phase

The setup phase is used to fund the contract by allocating some funds to a
multisig address. Once the funding transaction is confirmed neither endpoint

5

can unilaterally move the funds, instead they will have to collaborate to
spend the funds.

Both endpoints A and B generate and exchange two public-/private-
keypairs:

• a settlement keypair (As and Bs) used to spend the funds to a settle-
ment transaction and thus terminate the protocol;

• an update keypair (Au and Bu) used to replace a previous update,
continuing the protocol;

One endpoint, the funder, creates a funding transaction Tu,0 spending
some of its coins, and creating a funding output o0 that requires both end-
points to collaborate in order to spend the funds. This is enforced by re-
quiring both endpoints to sign any spending transactions either with Au and
Bu, or with As and Bs. Figure 2 details the exact script that sets up the
spending conditions for the shared output.

Before signing and broadcasting the funding transaction the funder re-
quires the other endpoint to create an initial settlement transaction that
returns the funds back to the funder. The initial settlement transaction
spends the funding output, and creates a single output that returns all of
the funds to the funder. This settlement transaction is then signed using
the settlement key and returned to the funder. The funder verifies that the
settlement transaction matches its expectations, i.e., it returns its funds and
is signed by the other endpoint. Now the funder can broadcast the funding
transaction, and wait for it to be confirmed effectively starting the contract.
The funder also signs the initial settlement transaction, making it complete
and returns it to the other endpoint. Both endpoints hold an identical set
of settlement transactions, i.e., there is no asymmetry in what the endpoints
know about. This is in stark contrast with the channel commitment invalida-
tion procedure used today in Lightning, in which the settlement transactions
are personalized to the endpoint and may not be shared without incurring a
loss.

Figure 2 shows the output script that is used by the funding output as
well as all successive update transaction outputs. It may be further opti-
mized by moving some operations, but we omitted the optimization for the
sake of clarity. The if branch is used to attach a settlement transaction
while the else branch is used to attach future update transactions. Notice
that the settlement branch is encumbered with an OP_CHECKSEQUENCEVERIFY

(abbreviated as OP_CSV). The OP_CSV opcode is preceded by a numeric argu-
ment, which defines the number of blocks that the output being spent has to

6

OP_IF
10 OP_CSV
2 As Bs 2 OP_CHECKMULTISIGVERIFY

OP_ELSE
2 Au Bu 2 OP_CHECKMULTISIGVERIFY

OP_ENDIF

Figure 2: The output script used by the on-chain update transactions.

<sig Au>
<sig Bu>
OP_FALSE

(a) Update transaction input script

<sig As>
<sig Bs>
OP_TRUE

(b) Settlement transaction input script

Figure 3: Input scripts used when spending either for an update or a settle-
ment

be confirmed before the script is executed. If the required number of blocks
is not reached the opcode will raise an error and the verification fails.

The OP_CSV in the if -branch creates a timeout during which only the else
branch is valid, giving precedence to update transactions, and only allowing
settlement transactions after the timeout expires.

Figure 3 shows the input scripts for the update transaction and the set-
tlement transaction matching the conditions set up in the output script listed
in Figure 2. They only differ in the branch of the if -statement that is being
selected, and which keys provided the signatures. The use of different key-
pairs prevents an attacker from simply swapping out the branch selection
and reusing the same signatures for the other branch.

The settlement is renegotiated with each update, changing the alloca-
tions of funds to each participant. While the initial settlement transaction
had a single output returning funds to the funder, updates may now create
new settlement transactions with any number of outputs, with varying allo-
cations to any one of them. In addition to simple outputs directly owned by
the participants, it is also possible to add more complex outputs, to the set-
tlement transaction, such as HTLCs [4] for multi-hop payments or payments
conditioned on the release of a secret.

7

3.2 Negotiation and Settlement phase

In the on-chain protocol the negotiation phase and the settlement phase
overlap. Since the funding transaction was broadcast during the setup phase,
the endpoints have some time, i.e., until the OP_CSV timeout expires, before
the initial settlement transaction becomes valid.

Should they want to invalidate the settlement transaction and replace it
with a new version, they collaborate to create an update transaction. The
update transaction spends the contract’s funding transaction output or the
previous update transaction output and creates a new output, with the same
script as the previous transaction. Update transactions are signed by Au and
Bu, and therefore immediately valid unlike the OP_CSV encumbered settle-
ment script branch. The update transaction effectively doublespends the
settlement transaction before it becomes valid.

As with the funding transaction, before signing and broadcasting the new
update transaction, the two endpoints negotiate a new settlement transaction
that spends the newly created contract output.

For example assuming that the outputs of the current settlement trans-
action are balanceA,i−1 = 5 and balanceB,i−1 = 5 as singlesig outputs owned
by A and B respectively. If endpoint A wants to transfer 1 bitcoins to B
then they create an unsigned update transaction Tu,i that spends the pre-
vious output oi−1 from Tu,i−1 and creates a new output oi with the same
script as oi−1. Then they create a settlement transaction Ts,i that has two
outputs, assigning balanceA,i = 4 to A and balanceB,i = 6 to B. Once the
settlement transaction is created the endpoints exchange signatures using
their settlement keys As and Bs for the settlement transaction. After veri-
fying the validity of the settlement transaction they exchange signatures for
Tu,i using keys Au and Bu and broadcast it to the network.

The old settlement transaction Ts,i−1 can be safely discarded since was
doublespent by the update transaction Tu,i, and Ts,i−1 cannot be used at a
later point in time.

This process is repeated multiple times, moving funds back and forth be-
tween the endpoints, or with more complex outputs such as HTLCs. Even-
tually there is no new update, and the endpoints decide to settle. In this
case they simply wait for the OP_CSV timeout to expire and use the final set-
tlement transaction, i.e., the last agreed upon settlement transaction, that
has not been doublespent by an update, to move the funds to the respective
endpoints, thus terminating the contract.

Alternatively they could collaborate and create a settlement transaction
that uses the unencumbered branch of the script, i.e., by signing with the

8

update keypairs instead of the settlement keypairs. This would avoid the
waiting period during the settlement.

Notice that choosing the correct timeout for the settlement branch is a
trade-off. It must be chosen high enough to guarantee that any subsequent
update is confirmed before the settlement transaction becomes valid. On
the other hand this timeout is also the time participants have to wait before
funds are returned to their sole control should the other participant stop
cooperating.

4 Lifting the protocol off the chain

While the protocol in Section 3 is correct, and allows a multiparty contract
to be updated any number of times, it does nothing to address the scalability
issue: it still requires every single update to be broadcast to the blockchain.
In this section we describe how the simple on-chain protocol of updating by
doublespending settlement transactions can be lifted off the blockchain to
build a scalable off-chain protocol.

This is achieved by allowing update transactions to bind to any of the
previous update transactions. Rebinding to any prior update effectively skips
the intermediate update transactions, thus greatly reducing the on-chain
transactions.

4.1 Floating Transactions

The key insight is that the intermediate update transactions do not have to
be committed to the blockchain at all. After all they were used as entry-
points to the intermediate settlements and respent by the following update
transactions when updating. The latest set of update transaction Tu,i and
settlement transaction Ts,i represent the entire state of the contract, and
intermediate transactions are not needed. If it is possible to have later
transaction attach to the output of any of the preceding update outputs,
it is possible to skip intermediate transactions and still enforce the latest
agreed upon state. We call transactions that can be attached to any output
of one of its predecessors a floating transaction.

4.1.1 SIGHASH_NOINPUT

Bitcoin transactions commit to the outputs they are spending by includ-
ing a reference, i.e., a previous output transaction hash and an index, in
the transaction. It is usually not possible to change the reference without

9

OP_IF
10 OP_CSV
2 As,i Bs,i 2 OP_CHECKMULTISIGVERIFY

OP_ELSE
<Si + 1> OP_CHECKLOCKTIMEVERIFY
2 Au Bu 2 OP_CHECKMULTISIGVERIFY

OP_ENDIF

Figure 4: The output script used by the update transactions. The spending
transaction’s locktime is compared to the state number Si + 1 (matching
the spent transaciton locktime) in the script, before proceeding to signature
verification.

invalidating signatures that authorize the transaction, since the signature
commits to the reference. However, signatures in Bitcoin transactions can
be parameterized with the sighash-flag that specifies which parts of the trans-
action are committed to in the signature. By introducing a new sighash flag,
SIGHASH_NOINPUT, it is possible to selectively mark a transaction as a floating
transaction.

SIGHASH_NOINPUT instructs the signature creation and the signature ver-
ification code to blank the previous output field of the input that is being
signed. By doing so the signature no longer commits to any specific pre-
vious output, and the transaction can be rewritten to reference a different
transaction output. The process of rewriting the transaction to reference
different outputs is called binding. Notice that binding allows us to spend
any output, without invalidating the signatures, as long as the output scripts
and the input scripts match. We have therefore removed the tight coupling
between the spending transaction and the outputs it is spending, and have
replaced it with a weak coupling through the scripts.

In the eltoo protocol, the update transactions Tu,i, and the settlement
transactions Ts,i are signed making use of SIGHASH_NOINPUT. Since the out-
puts of the update transactions are all compatible, any update transaction
can be rebound to spend any of the other update transaction’s outputs.
When attempting to bind to a different previous update transaction the par-
ticipant can simply replace the previous output transaction hash in the input
with the transaction hash that it is to be bound to.

Settlement transactions are also floating transactions, since rebinding
the update transaction that created the output the settlement transaction
spends, changes its hash. Like before we reintroduce the coupling from
settlement transaction to the specific update output through the scripts.

10

4.1.2 Ordering of updates

Using the SIGHASH_NOINPUT flag for update transaction adds a lot of flexibil-
ity, however they are now too flexible. To illustrate why imagine an update
transaction Tu,i and a later update transaction Tu,j with j > i. Without fur-
ther restrictions it would be possible to use Tu,i to spend the output created
by Tu,j , i.e., replace a later state with an earlier one.

This was not a problem in the on-chain protocol since the transactions
were not floating and could only be spent in the correct order, but by lifting
the protocol off-chain and introducing SIGHASH_NOINPUT, we have lost the
update ordering. To re-establish the ordering we introduce the concept of
state numbers, similar to the original intent for sequence numbers.1

Generally speaking, by using SIGHASH_NOINPUT we have removed any com-
mitment to the state we are replacing. We therefore have to selectively
re-introduce some of the previous transaction’s details into the validation.

The output script of the update transaction has the format given in
Figure 4. The key difference with respect to the on-chain update output
script is that the off-chain update output script includes a new operation,
OP_CHECKLOCKTIMEVERIFY (abbreviated as OP_CLTV) and it commits to the
next state number Si + 1, i.e., the earliest state number that may replace
this update Tu,i.

The output script therefore specifies that only an update transaction
with a higher state number than the current state number may bind to
this output. The current state number is stored in the nLocktime field of
the transaction, while the next higher state number is stored in the output
script.

We are now using the existing nLocktime field in a transaction to store the
spending transaction’s state number. This is necessary since the signature
does not cover the signature field (or the witness field in segregated witnesses
transactions) and hence an attacker could simply change the state number in
the spending transaction without invalidating the signatures. Furthermore
the spending transaction’s state number cannot be committed to in the out-
put script since at the time of its creation we do not yet know which one
will be the last settlement transaction, nor its state number. On the other
hand the minimum state number that may be bound to the update output
is know at the time of creation of the update transaction, and can therefore
simply be pushed onto the stack without incurring these problems.

With this mechanism we have repurposed the nLocktime field in a trans-
1Notice that we could use nSequence for this purpose, but due to the interplay with

OP_CSV we opted to use nLocktime.

11

action to be able to have signatures commit to an arbitrary state number.
However, the nLocktime field is already being used to invalidate transactions
until some time. We need to therefore be careful about which values we as-
sign to this field in order to avoid interference between the two mechanisms.
Fortunately there is a vast range locktime values that are in the past: any
number above 0.500 billion is interpreted as a UNIX timestamp, and with a
current timestamp of ≈1.5 billion, that leaves about 1 billion numbers that
are interpreted as being in the past. If a number in this range is used as
a locktime value, then the existing locktime mechanism will consider them
valid, hence they can be used for our purpose.

Notice that this repurposing is only needed in order to maintain back-
ward compatibility with the currently deployed version of Bitcoin. Other
cryptocurrencies could introduce a new numeric field, that signatures com-
mit to, that is specifically used for this purpose, potentially extending the
number of valid updates.

4.1.3 Attaching settlement transactions to update transactions

In Section 4.1.1 we mentioned that settlement transactions are also signed
using SIGHASH_NOINPUT. This is necessary since rebinding the update trans-
action also changes its hash, potentially breaking the reference from the
settlement transaction to its corresponding update transaction. Unlike the
case in which we want to enable an update transaction to bind to any pre-
vious transaction, we need limit the settlement transaction to be bindable
solely to the matching update transaction.

In order to achieve the limited binding for settlement transaction a new
set of public keys As,i and Bs,i is derived that is specific to each state number.
The key-pair derivation can easily be done with hierarchical deterministic key
derivation as used by many existing Bitcoin wallets. This ensures that a set-
tlement transaction can only be bound to the matching update transaction.
It does not increase the storage requirements for the participant since it’ll
only need to remember the key-pair matching the latest state.

Figure 5 shows an example execution of the off-chain protocol in which
a number of updates invalidate the corresponding settlement transactions.
An update transaction Tu,i can be attached to any of the previous shared
update outputs, hence the intermediate transactions can be skipped when
settling on-chain. This is symbolized by the lighter color in the figure. In an
ideal instance the setup output is directly spent by the final update which
in turn enables the final settlement.

While nothing prevents an intermediate update Tu,i from being broadcast

12

Setup Tu,1 Tu,i−1 Tu,i

Ts,0 Ts,1 Ts,i−1 Ts,i

Figure 5: Overview of the off-chain protocol.

and confirmed in the blockchain, it can immediately be respent by any of
the later update transactions Tu,j with j > i. This is true for any of the
intermediate states and terminates when there were no more agreed upon,
i.e., fully signed, update transactions, when the final update transaction is
broadcast.

4.1.4 Compatibility with P2SH and P2WSH transactions

In 2012 BIP 16 [1] introduced the concept of pay-to-script-hash which was
used to defer revealing the spending conditions until the time of the output is
being spent, hence reducing the state nodes need to maintain and improving
extensibility. P2SH only commits to the hash of the script that sets up the
spending conditions instead of listing the full script. A P2SH output script
has the following format OP_HASH160 [20-byte-hash-value] OP_EQUAL and
will verify that the script provided by the spending transaction in serialized
form matches what we expect. With the introduction of segregated witnesses
the P2SH scheme was extended with a witness version P2WSH, in which the
script that the output commits to is no longer revealed in the input, but
rather is part of the witness.

P2SH adds yet another level of indirection, since the spender needs to
reconstruct the output script that was committed to in the previous trans-
action. Since the output scripts in the update transactions are all identical,
except for the state number and the settlement keys which are derived using
the state number, the spender needs to recover the state number.

The spender now has to recreate the P2SH or P2WSH script, which
includes the state number, in order to provide it by pushing it onto the
stack during the verification. Since the only difference between the various
scripts is the state number and the public keys derived from the seed and the
sequence number this requires to look up the nLocktime of the transaction

13

that is being spent, i.e., the spender is being bound to. This lookup is already
required in order to know what the spending transaction should be bound
to, hence this does not add any more complexity.

4.1.5 Adding transaction fees to updates

One final issue is that all the transactions so far do not have any fees attached.
Fees are important in order have miners confirm transactions in a timely
manner. This is paramount for security, since if an intermediate update
transaction is confirmed, but following update transactions are delayed, it
could happen that the OP_CSV timeout expires and the invalidated settlement
transaction is now valid as well, resulting in a race between the update and
the invalidated settlement.

Fees are allocated by not assigning some of the input value to an out-
put, creating unassigned value that can be claimed by the miner confirming
the transaction. The update transactions cannot leave a part of the value
unassigned since they’d be gradually reducing the funds in the channel with
each update. Furthermore the unassigned funds would have to be sufficient
to cover the cost for each update being confirmed individually in the worst
case, severely limiting the lifetime of the channel.

The solution is to allow update transactions to add further funds on the
fly, without invalidating the existing signatures. Since the update transac-
tions have a single input and a single output, they can be signed using the
sighash-single flag, which only ensures that the output matching the input
is present, but leaving the transaction open for further modifications.

Should a participant wish to confirm an update transaction, and thus
initiate the settlement phase, they can alter the update transaction by adding
a new input, spending some of their funds, and add a new output. The new
output returns the funds added, minus a miner fee, to the participant.

The ability to dynamically add fees at the settlement time maximizes
the flexibility of the settling party. If the update transaction represents
the last agreed upon state it can use relatively low fees being certain that
it will not be replaced. Should the selected fee be too low during times
of network congestion, then either party can create a new version of the
update transaction bumping the fee (Replace-by-fee [5]) ensuring a timely
settlement.

Should an attacker attempt to settle an invalidated state, then the fees
may be collected by a miner, and the other endpoint can enforce the lat-
est state regardless, by adding fees to her update. This last case effectively
punishes the attacker by allowing the transaction to be confirmed, and sub-

14

sequently replacing it, but without returning the fees on the intermediate
update.

4.2 Settling a contract

In its current form the off-chain protocol has a limited lifetime since the
shared output script has a settlement branch that becomes active after a
timeout. This is implemented using the OP_CHECKSEQUENCEVERIFY opcode,
which starts counting down the timeout as soon as the output is confirmed.
The timeout was not a problem in the on-chain variant since the participant
either created a new update transaction before the timeout ran out, or let
the contract settle using the settlement transaction. In the off-chain variant
however, the timeout would require broadcasting and confirming intermedi-
ate update transactions in order to extend the lifetime of the contract, or
refresh the contract.

In order to avoid having to refresh the contract on-chain simply to keep
the timeouts from expiring, we introduce an additional step in-between the
setup phase and the settlement phase: the trigger step. The sole purpose
of the trigger step is to defer the time at which the timeout starts. The
output from the setup transaction is changed into a simple 2-of-2 multisig
output, which is then spent by a trigger transaction that has a single output
with the output script from Figure 4. Update and settlement transaction
no longer spend the setup transaction’s output, but rather they spend the
trigger transaction’s output. The trigger phase starts with the broadcast of
the setup transaction and ends with the broadcast of the trigger transaction.

During the setup phase both endpoints ensure not only that they have a
valid settlement transaction that returns the funds to the funder, but they
also exchange signatures for the trigger transaction. This in turn enables
either party to initiate the settlement phase by broadcasting the trigger
transaction, the latest update transaction if any, and the latest settlement
transaction.

5 Analysis

The eltoo renegotation protocol simplifies existing off-chain protocols, and
enables new use-cases for off-chain protocols. In the following we will analyze
the security assumptions as well as lay out some of the new enabled use-cases.

15

5.1 Safety

We define a state i, consisting of the tuple of update transaction Tu,i and
settlement transaction Su,i, to be committed if the settlement transaction is
confirmed in the blockchain. For simplification we consider any transaction
to be confirmed if it appears in a block, i.e., we do not consider blockchain
reorganizations.

We define an unsafe execution of the protocol as any execution in which
a participant in the off-chain protocol, making use of the eltoo renegotiation
protocol, is able to commit an old state to the blockchain. Consequently any
execution in which only the final state is eventually committed is considered
safe. This matches the above definition of confirmation since any confirma-
tion of a settlement transaction that is not the final settlement is considered
sufficient to fail the protocol, even in the presence of reorganizations.

Notice that the setup of the contract is considered safe. It is easy to
see that, if the first update transaction and settlement transaction is signed
before the setup transaction is signed, then funds never are locked in without
the ability to settle again.

We consider the scenario with two participants in the protocol, one of
which is an attacker and the other one, the victim, behaves correctly. It is
the goal of the attacker to commit an old state, that maximized its payout.
For this purpose the attacker may store an arbitrary number of intermediate
update transactions, while the victim only stores the latest set of update and
settlement transactions.

At any point in time the attacker may broadcast an old update transac-
tion Tu,i, in the hope of also confirming Ts,i. Ts,i however will have to wait
for the OP_CSV timeout in the update’s output script to expire. This gives
the victim the opportunity of broadcasting the final update transaction as a
reaction. The victim can either witness Tu,i being broadcast or by seeing it
confirmed in the blockchain. The reaction consists of creating two versions
of the latest Tu,j transaction with j > i:

• T ′u,j bound to the setup output, effectively doublespending Tu,i;

• T ′′u,j bound to the output of Tu,i, which doublespends Ts,i;

Generally speaking, no matter which update transaction the attacker
broadcasts, the victim can doublespend both the update transaction itself,
or, in the case the update transaction succeeds, it can doublespend the settle-
ment. The eventual success of the doublespend is guaranteed by the OP_CSV

16

timeout, which ensures that the doublespend is prioritized over the attacker’s
settlement transaction.

The safety of the protocol therefore depends on two key assumptions:

• The victim can detect an attack in time to react to it, either by actively
participating in the network, or by outsourcing the reaction to a third
party;

• The later update transaction can be confirmed in the specified time to
doublespend the outdated update;

Both of these depend on the OP_CSV timeout duration, so if a user is
offline for a prolonged period it may chose a higher timeout. Higher timeouts
however also mean longer waiting time to retrieve its own funds in case the
other participant stops cooperating. The timeout can be collaboratively
chosen by the participants in order to optimize the safety and liveness of the
protocol, depending on the specific capabilities of the participants.

Notice that the settlement phase is little more than an update without
the need for a timeout, and therefore the same safety analysis applies.

5.2 Extending the protocol to more parties

As mentioned above the storage requirements for participants consist of the
latest tuple of update and settlement transaction. This is because they can
be rebound to any of the intermediate update transactions in case it gets
broadcast. This is in stark contract to the Lightning Network, where the
reaction to a previous state being published needs to tailored to that specific
state.

In Lightning the information stored is asymmetric, i.e., the information
stored by one endpoint is different from the information stored by the other.
In fact the security of Lightning hinges on the information being kept private
since publishing it could result in the funds being claimed by the other
endpoint. We refer to this information about previous states as being toxic.

With eltoo the information stored by the participants is symmetric, elimi-
nating the toxic information, and greatly simplifying the protocol as a whole.
The information being symmetric also enables extending the protocol to any
number of participants, since there is no longer a combinatorial problem of
how to react to a specific participant misbehaving.

The protocol can be generalized to any number of participants by simply
gathering all the settlement and update public keys of the participants and
listing them in the public key list. Due to the size constraints imposed on

17

the output scripts it is currently not possible to go beyond 7 participants.
This results from each participant contributing 2 public keys, 33 bytes each,
and the script size for P2SH scripts being limited to 520 bytes.

This limit is raised to 10’000 bytes for P2WSH scripts, allowing up to
150 participants, but producing very costly on-chain transactions. However,
with the introduction of schnorr signatures, and aggregatable signature it is
possible to extend this to any number of participants, and without incurring
the on-chain cost, since all public keys and signatures are aggregated into a
single public key and a single signature.

6 Related Work

The invalidation problem of superceded states is central to the all layer 2
protocols, and a number of proposals have been proposed. The idea of rene-
gotiating transactions while they are still unconfirmed dates back to the orig-
inal design Bitcoin by Nakamoto. This original design aimed to use sequence
numbers in the transactions to allow replacing superseded transactions sim-
ply by incrementing the sequence number. Miners were supposed to replace
any transaction in their memory pool by transactions with higher sequence
numbers. However, this mechanism was flawed since a rational miner will
always prefer transactions with a higher expected payout, even though they
may have a lower sequence number. An attacker could incentivize miners to
confirm a specific version by adding fees either publicly or by directly bribing
the miners.

A first invalidation mechanism that was actually deployed was used by
the simple micropayment channels by Hearn and Spilman [6]. The simple
micropayment channel supports incremental transfer of value in only one
direction, from a sender to a recipient. It uses partially signed transactions
that can be completed only by the recipient, which will only ever enforce the
latest state since it is the state that maximizes its payout. The unidirectional
nature of the simple micropayment channels severely limit their utility as
they can only be used for incremental payments and, once the funds in a
channel are exhausted, the channel has to be settled on-chain, and a new
one has to be set up.

The Lightning Network, proposed by Joseph Poon and Thaddeus Dryja [7]
is a much more advanced off-chain protocol that enabled bidirectional move-
ment of funds, and also used hashed timelock contracts (HTLCs) to enable
multi-hop payments that are end-to-end secure. The central idea of Light-
ning is to invalidate an old state by punishing the participant publishing

18

it, and claiming all the funds in the channel. This however introduces an
intrinsic asymmetry in the information tracked by each participant. The
replaced states turn into toxic information as soon as they are replaced, and
leaking that information may result in funds being stolen. The asymmetry
also limits Lightning to two participants.

Duplex Micropayment Channels [3], a design created in parallel to the
Lightning Network, also offer bidirectional movement of funds. They rely
on decreasing timelocks, arranged in an invalidation tree, to replace earlier
states. The major downsides of this design are the limited number of re-
placements, since the timelocks can only be counted down to the current
time. The invalidation tree extended the range of timelocks, however this
came at the cost of more on-chain transactions in the non-collaborative close
case.

All of the previous protocols had one major issue: since the transactions
need to be signed potentially hours or days before they were released into
the network, the participants would have to estimate the future fees to be
able to ensure a timely confirmation. This is particularly important for the
Lightning Network and Duplex Micropayment Channels, since they rely on
timelocks to allow a defrauded party to react. While the need to guarantee
timely confirmation is also true for eltoo, the need to estimate future fees
was completely removed. In eltoo the fees are added a posteriori at the time
the transaction is published, and, should the fee turn out to be insufficient
it can be amended simply by creating a new version of the transaction with
higher fees a broadcasting it.

The ability to extend the protocol to a larger number of participants
also means that it can be used for other protocols, such as the channel
factories presented by Burchert et al. [2]. Prior to eltoo this used the Duplex
Micropayment Channel construction, which resulted in a far larger number
of transactions being published in the case of a non-cooperative settlement
of the contract.

Finally, it is worth noting that the update mechanism presented in this
paper is a drop-in replacement for the update mechanism used in the Light-
ning Network specification [8]. It can be deployed without invalidating the
ongoing specification efforts by the specification authors or the implementa-
tions currently being deployed. This is possible since the existing stack of
transport, multi-hop and onion routing layers is orthogonal to the update
mechanism used in the update layer.

19

7 Conclusion

In this work we have introduced eltoo, a simple, yet powerful, renegotia-
tion and invalidation mechanism for off-chain protocols and smart contracts.
Eltoo is much simpler to implement and easier to analyze than previous pro-
tocols, can be easily extended to any number of participants and has a very
small footprint.

The modifications required to the Bitcoin protocol to support eltoo are
minimal and can be seen in Appendix A, and thanks to the recent deployment
of segwit can be deployed easily.

References

[1] Gavin Andresen. Pay to script hash. https://github.com/
bitcoin/bips/blob/master/bip-0016.mediawiki. Online; ac-
cessed 06 November 2017.

[2] Conrad Burchert, Christian Decker, and Roger Wattenhofer. Scalable
Funding of Bitcoin Micropayment Channel Networks. In Symposium on
Self-Stabilizing Systems, November 2017.

[3] Christian Decker and Roger Wattenhofer. A fast and scalable payment
network with bitcoin duplex micropayment channels. In Symposium on
Self-Stabilizing Systems, 2015.

[4] David A. Harding. Hashed timelock contracts. https://en.bitcoin.
it/wiki/Hashed_Timelock_Contracts. [Online; accessed March
2018].

[5] David A. Harding and Peter Todd. Opt-in full replace-by-fee
signaling. https://github.com/bitcoin/bips/blob/master/
bip-0125.mediawiki. Online; accessed 06 November 2017.

[6] Mike Hearn and Jeremy Spilman. Bitcoin contracts. https://en.
bitcoin.it/wiki/Contracts. [Online; accessed May 2015].

[7] Joseph Poon and Tadge Dryja. Lightning network, 2015.

[8] Lightning Specification Team. Lightning network specifications. https:
//github.com/lightningnetwork/lightning-rfc. [Online;
accessed April 2018].

20

https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki
https://en.bitcoin.it/wiki/Contracts
https://en.bitcoin.it/wiki/Contracts
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc

A SIGHASH_NOINPUT BIP

BIP: xyz
Layer: Consensus (soft fork)
Title: SIGHASH_NOINPUT
Author: Christian Decker <decker.christian@gmail.com
Comments-Summary: No comments yet.
Comments-URI: https://github.com/bitcoin/bips/wiki/Comments:BIP-xyz
Status: Draft
Type: Standards Track
Created: 2017-02-28
License: PD

A.1 Abstract

This BIP describes a new signature hash flag (sighash-flag) for segwit
transactions. It removes any commitment to the output being spent from
the signature verification mechanism. This enables dynamic binding of trans-
actions to outputs, predicated solely on the compatibility of output scripts
to input scripts.

A.2 Motivation

Off-chain protocols make use of transactions that are not yet broadcast to
the Bitcoin network in order to renegotiate the final state that should be
settled on-chain. In a number of cases it is desirable to react to a given
transaction being seen on-chain with a predetermined reaction in the form
of another transaction. Often the reaction is identical, no matter which
transaction is seen on-chain, but the application still needs to create many
identical transactions. This is because signatures in the input of a transaction
uniquely commit to the hash of the transaction that created the output being
spent.

This proposal introduces a new sighash flag that modifies the behav-
ior of the transaction digest algorithm used in the signature creation and
verification, to exclude the previous output commitment. By removing the
commitment we enable dynamic rebinding of a signed transaction to outputs
whose witnessProgram and value match the ones in the witness of the
spending transaction.

The dynamic binding is opt-in and can further be restricted by using
unique witnessProgram scripts that are specific to the application in-

21

stance, e.g., using public keys that are specific to the off-chain protocol
instance.

A.3 Specification

SIGHASH_NOINPUT is a flag with value 0x40 appended to a signature so
that the signature does not commit to any of the inputs, and therefore to
the outputs being spent. The flag applies solely to the verification of that
single signature.

The SIGHASH_NOINPUT flag is only active for segwit scripts with version
1 or higher. Should the flag be used in a non-segwit script or a segwit script
of version 0, the current behavior is maintained and the script execution
MUST abort with a failure.

The transaction digest algorithm from BIP 143 is used when verifying a
SIGHASH_NOINPUT signature, with the following modifications:

2. hashPrevouts (32-byte hash) is 32 0x00 bytes
3. hashSequence (32-byte hash) is 32 0x00 bytes
4. outpoint (32-byte hash + 4-byte little endian) is

set to 36 0x00 bytes
5. scriptCode of the input is set to an empty script

0x00

The value of the previous output remains part of the transaction digest
and is therefore also committed to in the signature.

The NOINPUT flag MAY be combined with the SINGLE flag in which
case the hashOutputs is modified as per BIP 1432: it only commits to the
output with the matching index, if such output exists, and is a uint256
0x0000......0000 otherwise.

Being a change in the digest algorithm, the NOINPUT flag applies to all
segwit signature verification opcodes, specifically it applies to:

• OP_CHECKSIG

• OP_CHECKSIGVERIFY

• OP_CHECKMULTISIG

• OP_CHECKMULTISIGVERIFY
2BIP143: Transaction Signature Verification for Version 0 Witness Program

22

https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki

A.4 Binding through scripts

Using NOINPUT the input containing the signature no longer references a
specific output. Any participant can take a transaction and rewrite it by
changing the hash reference to the previous output, without invalidating the
signatures. This allows transactions to be bound to any output that matches
the value committed to in the witness and whose witnessProgram,
combined with the spending transaction’s witness returns true.

Previously, all information in the transaction was committed in the sig-
nature itself, while now the relationship between the spending transaction
and the output being spent is solely based on the compatibility of the
witnessProgram and the witness.

This also means that particular care has to be taken in order to avoid
unintentionally enabling this rebinding mechanism. NOINPUT MUST NOT
be used, unless it is explicitly needed for the application, i.e., it MUST
NOT be a default signing flag in a wallet implementation. Rebinding is
only possible when the outputs the transaction may bind to all use the same
public keys. Any public key that is used in a NOINPUT signature MUST
only be used for outputs that the input may bind to, and they MUST NOT
be used for transactions that the input may not bind to. For example an
application SHOULD generate a new key-pair for the application instance
using NOINPUT signatures and MUST NOT reuse them afterwards.

A.5 Deployment

The NOINPUT sighash flag is to be deployed during a regular segwit script
update.

A.6 Backward compatibility

As a soft fork, older software will continue to operate without modification.
Non-upgraded nodes, however, will not verify the validity of the new sighash
flag and will consider the transaction valid by default. Being only applicable
to segwit transaction, non-segwit nodes will see an anyone-can-spend script
and will consider it valid.

23

A.7 Acknowledgments

The NOINPUT sighash flag was first proposed by Joseph Poon in February
20163, after being mentioned in the original Lightning paper4. A formal
proposal was however deferred until after the activation of segwit. This
proposal is a continuation of this discussion and attempts to formalize it in
such a way that it can be included in the Bitcoin protocol. As such we’d like
acknowledge Joseph Poon and Thaddeus Dryja as the original inventors of
the NOINPUT sighash flag, and its uses in off-chain protocols.

3bitcoin-dev SIGHASHNOINPUT in Segregated Witness
4Lightning Network paper

24

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-February/012460.html
http://lightning.network/lightning-network.pdf

	Introduction
	Bitcoin Basics
	On-chain update protocol
	Setup Phase
	Negotiation and Settlement phase

	Lifting the protocol off the chain
	Floating Transactions
	SIGHASHNOINPUT
	Ordering of updates
	Attaching settlement transactions to update transactions
	Compatibility with P2SH and P2WSH transactions
	Adding transaction fees to updates

	Settling a contract

	Analysis
	Safety
	Extending the protocol to more parties

	Related Work
	Conclusion
	SIGHASH_NOINPUT BIP
	Abstract
	Motivation
	Specification
	Binding through scripts
	Deployment
	Backward compatibility
	Acknowledgments

