Non-Custodial Options using Elements

Sanket Kanjalkar, Allen Piscitello, Andrew Poelstra

October 20, 2022

Abstract

Elements is a blockchain platform that extends Bitcoin to allow issuing
additional assets. Elements uses Bitcoin’s opcodes along with additional
opcodes not available in Bitcoin. The addition of the introspective op-
codes in Elements allow for more complex transactions that can allow for
blockchain-level enforcement of these transfers based on the construction
of the transaction itself. Introspective opcodes can be used to construct
covenants that can enforce numerous financial instruments, such as op-
tions contracts, without the need for a central custodian or escrow agent.
This document will describe how a non-custodial option contract can be
implemented using Miniscript Extensions, which utilize the additional in-
trospective and arithmetic opcodes added to Elements.

1 Options

Options represent the rights to buy an asset (referred to as the Collateral As-
set) from another party at some point in the future for a given price, measured
in another asset (referred to as the Settlement Asset). The party that obtains
this right (referred to as the Option Grantee) typically will pay a premium to
the seller (referred to as the Option Grantor) for this privilege. The Option
Grantee has the right but not obligation to exercise this option. If the option
has not been exercised before an expiry date, the Option Grantor is able to
keep their pledged collateral.

An additional variant of an option contract is the right without obligation
to sell an asset to another party at some point in the future for a given price.
Functionally this is identical to having an option to buy the Settlement Asset
for the Collateral Asset, therefore we will always refer to options as having the
rights to buy an asset, even though in practice it is thought of as the rights to
sell an asset to a buyer.

Options typically come in two varieties — cash settled and physically settled.
In a physically settled option, there is a delivery of the underlying collateral and
settlement to each of the parties involved. In cash settled, rather than transfer
the assets involved, a cash asset that represents the gain or loss of the trade,
when all assets would be sold at a market price. For example, if Alice wished
to sell Bob an option contract on Bitcoin with a $50,000 strike price through

cash settled options, Bob would receive USD from Alice, rather than Bitcoin,
if he exercised the option. In this example, suppose the price was $60,000 at
the time of exercise. Rather than receiving 1 Bitcoin from Alice in exchange
for $50,000, Alice would transfer Bob $10,000, the net of the $60,000 value of
Bitcoin and the $50,000 strike price. Cash settled options can often times have
no underlying collateral backing the contracts, and in extreme price swings, can
leave the option seller unable to fulfill their obligation.

Options are typically secured through legal contracts or through custodians.
If the Option Grantee wishes to execute the option and the Option Grantor is
unable or unwilling to fulfill this obligation, the conflict may be resolved in court,
typically at great expense to both parties. An Option Grantor additionally may
not be able to fulfill their obligation due to lack of liquidity or assets, leaving
the Option Grantee with little recourse. An alternative approach is to require
the Option Grantor to transfer their Collateral Asset to a third party to hold
in escrow, ensuring that the collateral will be available for the Grantee at the
expiry date. This also contains risk — the escrow agent now must keep this asset
secure, and must be trusted to fulfill the obligation on behalf of the Option
Grantee.

Smart Contracts allow the rules of the Option to be encoded into code such
that no third party is needed to enforce the contract other than the enforcement
of the rules native to a blockchain.

Elements has sufficient power to create and enforce options contracts for
assets on the Elements platform. Physically settled options contracts remove
the need for any third party price oracles.

2 Elements Introspection Opcodes

Elements has introduced several opcodes that allow for the introspection of the
transaction contents. These introspection opcodes allow for inspecting all parts
of the transaction such as the asset, value, and script of each input and output.
Additionally, 64-bit signed arithmetic operations have been added to allow for
calculations to be made over the values of the Elements transactions.

2.1 Limit Order Example

A limit order is an offer to sell or buy an asset for a given price, up to a maximum
quantity. Limit orders can be enforced on Elements using the Introspection
Opcodes and the signed 64-bit arithmetic opcodes. For example, if a trader
wishes to sell up to 5 L-BTC in exchange for 20,000 USDt per L-BTC, the seller
can encumber 5 L-BTC into a covenant that allows any buyer to remove up to 5
L-BTC from the covenant as long as they send 20,000 USDt per L-BTC removed
to an address specified by the seller. If the buyer wishes to trade less than the
5 L-BTC limit, they simply create a change output that also is encumbered by
the same covenant of the amount remaining. In this case, the seller is called the

maker and the buyer is considered the taker of the limit order. This allows for
partial fills of the limit orders. The covenant would have the following rules:

e Input 0 is the covenant being spent. This ensures that multiple covenants
cannot re-use the same change output when calculating how much has
been removed from the covenant.

e Output 0 is the amount paid to the limit order maker.

— The Asset must be explicit and must be USDt.
— The Script must be the seller’s specified address.

e Output 1 is any change returned to the covenant, if change is needed. If
there is any change remaining (20000 x [amount of Input 0] > [amount
of Output 0]), there must be a change output:

— The asset must be explicit and must be the same as Input 0.

— The change must be the correct amount: [amount of Output 0] =
([amount of Output 1] - [amount of Input 0]) x 20000.

— The Script must be equal to the Script of the output spent at Input
0.

2.2 Covenant Example

In this example, Alice funds a Covenant with 5 L-BTC. This Covenant allows for
the removal of 1 L-BTC per 20,000 USDt sent to Alice’s Wallet. Bob wishes to
trade against this order, but only wishes to purchase 2 of the 5 L-BTC available.
Bob constructs a transaction that spends the covenant’s UTXO in Input 0 and
adds a UTXO that allows him to send 40,000 USDt. He adds outputs that
pay Alice her desired amount of 40,000 USDt and returns 3 L-BTC back to the
covenant. Bob is able to claim the 2 L-BTC (minus transaction fees) and 10,000
USDt as change.

3 Miniscript Extensions

In 2020, Blockstream research developed Miniscript, a new way to model Bitcoin
Script that would allow generic signing, semantic analysis and composition.

With Miniscript, it is possible to automatically enumerate all the keys in a
script and determine which sets are needed to produce a transaction; find an
upper bound on the size of such a transaction prior to gathering signatures;
answer semantic questions about which conditions must be met in order to
spend coins; and compute the exact encodings for scripts and witnesses.

We have written an alternate version of Miniscript, extended to use the new
opcodes in Elements, to facilitate creation of more complex covenant scripts.
To this end, we added "extensions" to Miniscript that allows interacting with
these new opcodes. Broadly, put the new extensions can be categorized into
two types:

Alice Wallet

40,000.00 USDt
Covenant
Funding Transaction 5.0000000 L-BTC Covenant
g / Trade Transaction

3.0000000 L-BTC

Alice Wallet Outputs Alice Wallet
‘Inputs‘ 0 -
10.00000000 L-BTC H—w{ 0 | 1 | 4.99999000 L-BTC Inputs Bob Wallet
™0
2N 1.99999000 L-BTC
e 1

\ Fee
0.00001000 L-BTC

Bob Wallet

50,000.00 USDt

Im1 I
@ II
o

10,000.00 USDt

0.00001000 L-BTC

Figure 1: A transaction graph featuring a limit order covenant. All confidential
outputs are shaded.

e Extensions that allow introspection of the transaction data. These include
support for introspection of the transaction data, such as the asset, value,
and script of each input and output. For example,

asset_eq(out_asset(0),USDT_ASSET) can only be satisfied if the asset of
the first output is equal to the USDT _ASSET.

e Extensions that allow arithmetic 64 bit operations like comparisons, arith-
metic operations, and logical operations. For example,

num64 _gt(out_v(0),100) can only be satisfied if the value of the first out-
put is greater than 100.

There are new extensions that also support EC operations and streaming hash
operations. Those are explained in more detail in the extension spe(ﬂ

As with regular Miniscript, these extension fragments can be composed with
and, or and thresh to generate more complicated conditions. As a small
example, using the above constraints we can create the following script

e s1 = spk_eq(out_spk(0), OP_RETURN)
e s2 = value_eq(out_v(0), 1)
e s3 = asset_eq(out_asset(0), BURN _ASSET)

And finally combine them using thresh(3,s1,s2,s3). This gives us a systematic
and easy way to write a script which can only be unlocked if the spending
transaction output 0 spends 1 sat of BURN ASSET to OP_RETURN address.

Collateral Covenant

Generator Covenant

Settlement Covenant

Figure 2: The Options Lifecycle

4 Options Workflow

An option first must be defined and created. The option creator must specify
the parameters of the option contract, such as the Settlement and Collateral
Assets, the strike price and contract size, and expiry date. An option can
then be generated from these parameters. The result of this process is a set of
Generators that allow for the creation of options contracts. No contracts have
been issued at this point.

Options can be funded once they have been created. Funding an option con-
sists of creating a transaction that adds collateral into a covenant. The funder
of an option is then provided with a pair of tokens that represent the two parties
in an option — the grantee and grantor. The grantee is represented through an
Option Token, which gives the holder the right but not obligation to purchase
the collateral at a future date. The grantor is represented through a Grantor
Token, which gives the holder the ability to reclaim the collateral after the con-
tract has expired without being executed or the right to claim the settlement
payment made by the grantee. Once created, the funder can trade these tokens
with other users, depending on which position they would like to take. A funder
can take three positions — either as a market maker who tries to trade the tokens
to other users with a spread and profit from these discrepancies, as an option
seller who wishes to get paid a premium for being willing to sell the collateral if
its value increases, or as an option buyer who wishes to speculate on the price
of the collateral rising in the future while maintaining little downside exposure.
Each token generated represents one Contract Size amount of collateral. If a
user funds larger than this amount, they are compensated with multiple tokens.

An option contract can then follow three distinct paths. The first path is
when the contract expires without being executed. The holder of a Grantor
token can redeem this token for the corresponding collateral after the expiry
date. The second path allows for a user to redeem a pair of Grantor and Option
Tokens for the corresponding collateral. This allows for early access to the
collateral by holding offsetting tokens. The final path is exercising the option.

IThe detailed spec can be found at https://github.com/ElementsProject/elements-
miniscript/blob/6029abalfc31323877276e6e3d1311c25a519d3c/doc/extension spec.md

Exercising an option can happen at any time after a defined start date, and
as long as the underlying collateral has not been claimed by a holder of the
Grantor token. While this does mean that options can be exercised after their
expiry date, the Grantor has an incentive to claim the underlying collateral
as early as possible. The holder redeems the Option Token for the underlying
collateral by sending the payment to a Settlement Covenant, to be claimed by
an Options Grantor. It is possible for a single option contract to have all three
paths followed during its lifetime, however it is likely that all users will either
follow only one of the Expiry or Exercise paths. The cancellation path is likely
one that can be used by market makers to shrink liquidity when needed.

After an option has been exercised, the holder of a Grantor Token can redeem
this token for the Settlement Asset. In the event that not all options of the
same type have been exercised, the Grantor token holder can choose, from the
collateral available, if they prefer claiming the Settlement Asset or Collateral
Asset.

4.1 Options Creation

Generator Covenant

Creation Transaction

y{ 1 Option Token Generator

Creator Wallet

Outputs

Issuance: 0 P

1.00000000 L-BTC H Inputs Reissuance: 1 0 //w{ 1 Grantor Token Generator
0

1
1 " Creator Wallet
2.00000000 L-BTC H Rﬁi‘éﬂgﬁi'e?l ; \\.
I 2.9999900 L-BTC

Fee
0.00001000 L-BTC

¥

\

X

Figure 3: An Option Creation Transaction. All confidential outputs are shaded.

The parameters of the options contract is defined by six parameters:

e Collateral Asset — The asset that is locked in a covenant that a Grantee
is able to purchase for a set price.

e Settlement Asset — The asset that the purchase of the Collateral Asset
is denominated.

e Contract Size — The minimum amount of a Collateral Asset that can
be granted as an option.

e Strike Price — The amount per Contract Size of the Collateral Asset
that must be paid in the Settlement Asset.

¢ Execution Start Date — The date at which an option can be executed
by the Grantee. This parameter is optional.

e Expiry Date — The date at which the Grantor can reclaim their collateral.

Creating an option results in two Reissuance Tokens created and sent to
covenants (referred to as Generator Covenants). Generator Covenants allow
for the re-issuance of an asset given that collateral has been properly transferred
into a separate covenant (referred to as the Collateral Covenant). Initially,
there are no Option or Grantor tokens created.

This process allows for a demand-based supply of any option. Any user, at
any point in time, without permission, can add to the liquidity of an option
contract. Users can also remove liquidity through the cancellation operation by
burning an equivalent amount of Option and Grantor tokens.

4.2 Option Funding

Generator Covenant

1 Option Token Generator

r{ 1 Grantor Token Generator

Fund Transaction Collateral Covenant

Issuance: 50 QutRuLs
N| [mputs Reissuance: 0 0

Y
: Issuance: 50
1 Option Tokon Genorator |{—| 1
2
Alice Wallet

10.00000000 L-BTC

Generator Covenant

5.00000000 L-BTC

| 1 Grantor Token Generator

%

771N

11

Alice Wallet

Yy

4.99999000 L-BTC

50 Option Token

oo b | wf | =
]

50 Granator Token

Fee

0.00001000 L-BTC

I

Figure 4: An Option Funding Transaction

The Generator Covenant allows the creation of a pair of Option Tokens and
Grantor Tokens for every contract-size unit of the Collateral Asset transferred
into the Collateral Covenant.

In this example there is an option contract with contract size of 0.1 L-BTC
and a strike price of 50,000 USDt. Alice adds 5.0 L-BTC to the Collateral
Covenant and is able to generate 50 new Option Tokens and 50 new Grantor
Tokens. This process can be repeated multiple times by users in succession,
creating as many Option Tokens and Grantee tokens as necessary, by as many
parties who wish to participate in this process.

4.3 Option Trading

The party that funded the option can sell any of the tokens generated, allowing
them to take a position. One way this can be done is through an atomic swap

Bob Wallet

Alice Wallet

| » 199,400 USDt

50 Grantor Token

Swap T cti
; wep lransaction b 0.99999000 L-BTC
50 Option Token [Outputs
Bob Wallet Index 0 | t»{ 30 Option Token
s V) ; /
200,000 USDt » 1 3] Alice Wallet
w2 7 R
/ Il 20 Option Token
1.00000000 I-BTC H 5

[~ 600 USDt

Fee

~—/

0.00001000 L-BTC

Figure 5: An Option Trading Transaction. All confidential outputs are shaded.

— an interactive trade that allows multiple parties to perform a trade without
giving up control until their demands are fulfilled. These assets are unencum-
bered by covenants and can be freely traded or transferred as needed. Atomic
swaps are only one way this can be performed.

In this example, Alice wishes to grant an option to Bob, at the price of
20 USDt per contract for 30 Option Tokens. Alice and Bob collaboratively
construct a transaction that allows for this swap to occur — Alice receives net
600 USDt and Bob receives a net 30 Option Tokens. Alice retains all 50 Grantor
tokens.

4.4 Option Cancellation

The Collateral Covenant allows for retrieving the collateral by redeeming a pair
of Option and Grantor Tokens. For each pair redeemed, the covenant allows
the removal of one contract-size amount of the Collateral Asset.

In this example, Alice was unable to sell 20 of the Option Tokens she funded.
Since she is unable to find a buyer, she will redeem these 20 Option Tokens along
with 20 of her Grantor Tokens in exchange for 2 L-BTC (minus transaction
fees). These 20 pairs of tokens are burned, reducing the supply. After this
operation, there are 30 pairs of tokens that remain and 3.0 L-BTC remaining
(corresponding to 30 contracts).

Burn

» 20 Option Token

Collateral Covenant 20 Grantor Token
Cancel Transaction
5.00000000 L-BTC Outputs Collateral Covenant
0 |
Alice Wallet Inputs B = 3.00000000 L-BTC
0 1 /|
2 -
20 Option Token » 1 3 a Alice Wallet
" 2
|/ 2 M . 4.9999000 L BTC
50 Grantor Token |- 5 —

b 30 Grantor Token

Fee

7

0.00001000

Figure 6: An Option Cancellation Transaction. All confidential outputs are
shaded.

4.5 Option Exercise

The Collateral Covenant allows for redeeming an Option Token along with trans-
ferring a strike-price amount per token redeemed of the Settlement Asset into
the Settlement Covenant. This allows the user to remove a contract-size amount
of Collateral Asset at any point after the execution start date (if one is defined).
In this example, Bob purchased 30 Option Tokens from Alice. Bob has
decided to exercise 20 of these Options by redeeming the Options Tokens and
paying the Settlement Covenant 100,000 USDt. Bob cannot pay Alice directly,
as Alice may have transferred her Grantor tokens to others. This also allows for
fungibility between similar options contracts no matter who funded them.

4.6 Settlement Claim

The Settlement Covenant allows for redeeming a Grantor Token in exchange for
one strike-price amount of the Settlement Asset.

In this example, Bob exercised 20 option contracts, depositing 100,000 USDt
into the Settlement Covenant. Alice is able to redeem up to 20 Grantee Tokens
by burning them for up to 100,000 USDt.

Burn

20 Option Token

Collateral Covenant

» 1.00000000 L-BTC

NS

Collateral Covenant Excercise Transaction Settlement Covenant

3.00000000 L-BTC H Outputs » 100,000 USDt

0 =
Bob Wallet Inputs T M Bob Wallet
2) 2 -
199,400 USDt > 1 3 1.99999000 L-BTC

| 2 4 —
% ml

30 Option Token |H 5 ™ 99,400 USDt

= 10 Option Token

Fee

—/

0.00001000 L-BTC

Figure 7: An Option Exercise Transaction. All confidential outputs are shaded.

4.7 Option Expiry

The Collateral Covenant allows for retrieving any unclaimed collateral by re-
deeming a Grantor Token after the expiry date of the option.

In this example, Bob only exercised 20 option contracts, leaving 10 unexer-
cised. This allows Alice to claim back 10 contracts worth of collateral, equivalent
to 1 L-BTC in this case. She does this by burning 10 Grantor tokens. A this
point, no further Collateral and Settlement Assets remain in the covenant. Bob’s
unexercised Option Tokens can be discarded.

5 Covenant Definition

There are three covenants used to create options: the Generator Covenant — used
to fund and generate Grantor and Collateral Tokens, the Collateral Covenant
— used to manage the Collateral Asset, and the Settlement Covenant — used to
manage recovery of the Settlement Asset paid during exercise of options.

10

Burn

» 20 Grantor Token

Settlement Covenant

Settlement Transaction :
100,000 USDt || Alice Wallet
Index
% 100,000 USDt
Alice Wallet Index 0 /
w0 1
4.99990000 L-BTC 1 2 4.99980000 L-BTC
> 2 3 N
/| NN
30 Grantor Tokens H b 10 Grantor Tokens

Fee

| 4

0.00001000 L-BTC

Figure 8: An Option Settlement Transaction. All confidential outputs are
shaded.

Burn
Collateral Covenant Expiry Transaction 10 Grantor Token
1.00000000 L-BTC H Tnputs Qutputs Alice Wallet
w0 0 I
Alice Wallet T 1 0.9999000 1-BTC
'
2]
10 Grantor Token —/ Feo

= 0.00001000 L-BTC

Figure 9: An Option Expiry Transaction. All confidential outputs are shaded.

5.1 Generator Covenants

The Generator Covenants encumber the two reissuance tokens (Generators)
created from the Creation step. All reissuance tokens must be blinded when
spent in Elements when reissuing an asset. This presents a small complication
in the Generator Covenants — as it must verify the asset of the reissuance tokens
in both inputs and outputs. This is worked around by using fixed asset blinding
factors, alternating between 1 and 2 to create an asset commitment, but using

11

explicit values. This covenant can be used for both the Grantor Token Generator
and the Option Token Generator.
It has the following conditions enforced:

e Input 0 is the Grantor Token Generator

— (Rule 1) [Amount Issued] x [Contract Size] = [Output 2’s Amount]
e Input 1 is the Option Token Generator

— (Rule 1) [Amount Issued] x [Contract Size] = [Output 2’s Amount|
e Output 0 is the Grantor Token Generator

— (Rule 3) The Asset must be a commitment equal to either the Grantor
Token Generator’s Commitment with an Asset Blinding Factor of
1, or the Grantor Token Generator’s Commitment with an Asset
Blinding Factor of 2

— (Rule 4) The Amount must be explicit and equal to the amount of
Input 0

— (Rule 5) The Script must be equal to the Script of output spent by
Input 0

e Output 1 is the Option Token Generator

— (Rule 6) The Asset must be a commitment equal to either the Op-
tion Token Generator’s Commitment with an Asset Blinding Factor
of 1, or the Option Token Generator’s Commitment with an Asset
Blinding Factor of 2

— (Rule 7) The Amount must be explicit and equal to the amount of
Input 1

— (Rule 8) The Script must be equal to the Script of output spent by
Input 1
e Output 2 is the Collateral Covenant

— (Rule 9) The Asset must be explicit and the Collateral Asset
— (Rule 10) The Script must be equal to the Collateral Covenant’s
Script

— (Rule 2) The Amount must be equal to [Input 0 (and Input 1’s)’s
Amount Issued] x [Contract Size]

e (Rule 11) The current covenant must be spent from Input 0 (for the
Grantor Token Generator Covenant) or from Input 1 (for the Option To-
ken Generator Covenant)

12

Rule 1
numé4_eq(mul(inp_issue_v(0),[Contract Size]),out_v(2))

Input 0
Issuance Value

or_b(asset_eq(out_asset(0),[GrantorGenCommit11),
aasset_eq(out_asset(0),[GrantorGenCommit2]))

Output 0
Asset

Grantor Genrerator
Commitment 1

Grantor Generator
Commitment 2

Rule 9:
asset_eq(out_asset(2),[Collateral Asset])

Collateral]
Asset

ule 10:
spk_eq(out_spk(2),[Collateral Covenant]))
s

Collateral |
Covenant

Figure 10: A graphical representation of the Miniscript used for the Grantor
Token Generator Covenant

13

Rule 2:
num64_eq(mul(inp_issue_v(1),[Contract Size]),out_v(2))

Input 1
Issuance Value

Rule 7:
num64_eq(inp_v(1),out_v(1))

K)
Rule 8: @
spk_eq(inp_spk(1),out_spk(1))
Rule

6:
or_b(asset_eq(out_asset(1),[OptionGenCommit1]),
a:asset_eq(out_asset(1),[OptionGenCommit2]))

Option Generator
Commitment 2

asset_eq(out_asset(2),[Collateral Asset])

Collateral]
Asset
Rule 10:
spk_eq(out_spk(2),[Collateral Covenant]))
Output 2
ScriptPubKey

Collateral]
Covenant

Figure 11: A graphical representation of the Miniscript used for the Option
Token Generator Covenant

14

5.2 Collateral Covenant

The Collateral Covenant encumbers the Collateral Asset that has been pledged
to options contracts during the Funding step. There are three execution paths
for these cases. These execution paths are separate branches in a MAST.

5.2.1 Cancellation Path

The Cancellation Path ensures that a pair of tokens is burned for each Contract
Size amount of the Collateral Asset removed from the Collateral Covenant. The
Cancellation Path has the following conditions enforced:

e Input 0 is the Collateral Covenant
e Output 0 is the Option Token Burn

— (Rule 1) The Asset must be the Option Token
— (Rule 2) The Script must be equal to Output 1 and OP RETURN
— (Rule 3) The Amount must be equal to Output 1’s Amount

e Output 1 is the Grantor Token Burn

— (Rule 4) The Asset must be the Grantor Token
— (Rule 2) The Script must be equal to OP RETURN
— (Rule 3) The Amount must be equal to Output 1’s Amount

e Output 2 is the Collateral Covenant Change, if there is change.

— (Rule 5) [Output 0’s Amount| x [Contract Size] = [Input 0’s Amount)]
or

— (Rule 6) The Asset must be the Current Input’s Asset

— (Rule 7) The Script must be equal to the output spent by the Current
Input’s Script

— (Rule 8) [Output 0’s Amount| x [Contract Size|] = [Input 0’s Amount]
- [Output 2’s Amount]

¢ (Rule 9) The current covenant must be spent from Input 0.

5.2.2 Expiry Path

The Expiry Path allows burning the Grantor Token after the Expiry Date to
redeem a Contract Size amount of the Collateral Asset from the Collateral
Covenant. The Expiry Path has the following conditions enforced:

e Input 0 is the Collateral Covenant

e Output 0 is the Grantor Token Burn

15

Rule 1
asset_eq(out_asset(0, [Grantor Token])

G}

Ruled.
asset_eq(out_asset(1),[OptionToken]

and v(v:spk eqlout spk(0),out spk(1)),spk eq(out spk(1),0P RETURN)

—= R

[}
numé4_eqlout_v(0),out_v(1)) T

—iB

Chango

Rule 6
asset_eq(ourr_inp_asset,out_asset(2))

Rules
‘num64_eqeurr_inp_vmul({ContractSize],out_v(0))

Rulo7
spl_eqlcurr.inp_splout_spl(2))

g \\§>
S [

Ruled
num64 eglout v(2),subleurr inp vmul((ContractSizel out v(0))

umb4_gt

T

Figure 12: A graphical representation of the Miniscript used for the Collateral
Covenant’s Cancel Path

16

— (Rule 1) The Asset must be the Grantor Token
— (Rule 2) The Script must be equal to OP RETURN

e Output 1 is the Collateral Covenant Change, if there is change

— (Rule 3) [Output 0’'s Amount| x [Contract Size] = [Input 0’s Amount)]
or

(Rule 4) The Asset must be the Current Input’s Asset

(Rule 5) The Script must equal be the Script of the output spent by
the Current Input

— (Rule 6) [Output 0’s Amount| x [Contract Size] = [Input 0’s Amount)]
- [Output 2’s Amount]

¢ (Rule 7) The current covenant must be spent from Input 0.

¢ (Rule 8) This transaction can only occur in a block with a timestamp after
the [ExpiryDate]

Rule 1
asset_eq(out_asset(0), [Grantor Token])

Asset

[Grantor Token]

Rule 2
spk_eq(out_asset(0), OP_RETURN)

Change

o
Rule 3
num64_eq(curr_inp_v,mul([ContractSize],out_v(0)))
5 >
spk_e inp_spk,o
Output 0 Current Input é
Value Value
Rule 6
num64_eq(out_v(2),sub(curr_inp_v,mul([ContractSize],out_v(0))))

" Current Input
Contract Size | Valte ‘ é
Output 0
Value

Rule 6
numb64_gt(curr_inp_ymul([ContractSize],out_v(0)))

Contract Size

Rule 7
curr_idx_eq(0)

Current Index = 0 |

Figure 13: A graphical representation of the Miniscript used for the Collateral
Covenant’s Expiry Path

17

5.2.3 Exercise Path

The Exercise Path allows a user to burn an Option Token to retrieve a Contract
Sized amount of the Collateral Asset from the Collateral Covenant, provided
they send a Strike Price amount of the Settlement Asset to the Settlement
Covenant. The Exercise Path has the following conditions enforced:

e Input 0 is the Collateral Covenant
e Output 0 is the Option Token Burn

— (Rule 1) The Asset must be the Option Token
— (Rule 2) The Script must be equal to OP RETURN

e Output 1 is the Settlement Covenant

— (Rule 3) The Asset must be the Settlement Asset

— (Rule 4) The Amount must be equal to [Output 0’s Amount] x [Strike
Price]

— (Rule 5) The Script must be equal to the Settlement Covenant’s
Script

e Output 2 is the Collateral Covenant Change, if there is change

— (Rule 6) [Output 0’s Amount| x [Contract Size] = [Input 0’s Amount]
or

— (Rule 7) The Asset must be the Current Input’s Asset

— (Rule 8) The Script must equal be the Script of the output spent by
the Current Input

— (Rule 9) [Output 0’s Amount| x [Contract Size] = [Input 0’s Amount)]
- [Output 2’s Amount]

e (Rule 10) The current covenant must be spent from Input 0.

¢ (Rule 11) This transaction can only occur in a block with a timestamp
after the [StartDate]

5.3 Settlement Covenant

The Settlement Covenant allows a user to burn a Grantor Token to retrieve a
Strike Price amount of the Settlement Asset. The Settlement Covenant has the
following conditions enforced:

e Input 0 is the Settlement Covenant
e Output 0 is the Grantor Token Burn

— (Rule 1) The Asset must be the Grantor Token

18

Rule 1
asset_eq(out_asset(0),[Option Token])

[Option Token]

Rule 2
spk_eq(out_asset(0), OP_RETURN)

Rule 3
asset_eq(out_asset(1),[Settlement Asset])

Settlement Assset.

Rule 5
spk_eq(out_spk(1),[Settlement Covenant])

Settlement Covenant

Rule 6
num64_eq(eurr_inp_v;mul([ContractSize],out_v(0)))

Current Input
Value

Rule 9
num64_gt(curr_inp_v,mul([ContractSize],out_v(0)))

Current Input
Value

Rule 10
curr_idx_eq(0)

B

Figure 14: A graphical representation of the Miniscript used for the Collateral
Covenant’s Exercise Path

19

— (Rule 2) The Script must be equal to OP RETURN
e Output 2 is the Settlement Covenant Change, if there is change
— (Rule 3) [Output 0’s Amount] x [Strike Price] = [Input 0’s Amount]
or
— (Rule 4) The Asset must be the Current Input’s Asset

— (Rule 5) The Script must equal be the Script of the output spent by
the Current Input

— (Rule 6) [Output 0’s Amount] x [Strike Price] = [Input 0’s Amount]
- [Output 2’s Amount]

(Rule 7) The current covenant must be spent from Input 0.

Rule 1
asset_eq(out_asset(0), [Grantor Token])

Output 0
Asset
[Grantor Token]

Rule 2
spk_eq(out,_asset(0), OP_RETURN)

Output 0
] RN

Change

Rule 4
asset_eq(curr_inp_asset,out_asset(2))

Rule 3
num64_eqcurr_inp_ymul([ContractSize],out_v(0)))

_ p\l
num64_eq(out_v(2),sub(curr. mp Vmul([ContlactSlzeJ out_v(0))
Contract Size Cumant anuc 0
E=

nums4,gt(cm,mp,v,mul([(:omractslze],ouu(om

>3
Output 0 Current Input
Value Value

Rule 7
curr_idx_eq(0)

Current Index =0 |

Figure 15: A graphical representation of the Miniscript used for the Settlement
Covenant

20

6 Limitations and Risks

6.1 Bugs

Software bugs within Elements as well as the Covenants, software to create
the Covenants, or other components can lead to loss of funds, either through
improper access to claim funds that are not designed to be removed from a
Covenant or by locking funds in Covenants without the ability to claim such
funds.

6.2 Key Loss

Any access to the Collateral or Settlement Assets requires holding tokens secured
by a private key. Any loss of these keys without backups would leave the rights
to the option or grantor rights inaccessible without any recovery mechanism.

6.3 User Error

It is possible to put funds inside covenants without claiming the proper amount
of value, such as funding a covenant without claiming tokens.

6.4 Network Failure

Any blockchain that enforces these rules could fail due to failure of functionar-
ies, lack of interest from operators, or software bugs, which could leave funds
inaccessible.

6.5 Asset Risk

There is no guarantee that the Collateral or Settlement Assets will maintain any
expected value in the event of failures, such as a failure to maintain the peg of
L-BTC, or through the failure of an issuer of an asset to maintain any promises.
Inflation in the supply of any asset due to a software bug or key mismanagement
could lead to an asset having significantly less value than expected and users
must account for this in their risk.

6.6 Partial Exercising

It is possible that an in-the-money option is not fully exercised by the holders
of the Option Token. It also may be possible that an out-of-the-money option
is exercised by a subset of the Option Token holders. In these cases, the hold-
ers of the Grantor Tokens have a choice to try to claim the Settlement Asset
or Collateral Asset, however only a small subset will be able to get the more
profitable choice. There may be a bidding war with higher fees or an incentive
for functionaries to favor certain parties to be able to claim the more profitable
choice.

21

6.7 Network Censorship

Liquid relies on a round-robin consensus algorithm based on a set of M func-
tionaries. Each of the M functionaries alternate in a set order to propose blocks,
including valid transactions into the blockchain, and must receive signatures on
these blocks by at least % of the functionaries (including their own). A mi-
nority of % of the functionaries can prevent any block that is proposed from
gathering enough signatures to be considered valid. A group of functionaries
that wish to prevent a party from exercising a particular option could refuse
to sign any block that contains an exercise transaction. Since the introspection
opcodes have many parts that are not confidential, it is immediately known to
any observer that a proposed transaction is a specific option operation, such as
exercising the option. One particular attack is when a set of functionaries hold
an out-of-the money position, such as a Grantor token when the price of the
Collateral Asset is above the Strike Price. In this case, the colluding minority
could prevent any block that includes a transaction that exercises the option
from being included. If N < %, the blockchain will continue to operate normally
although they can delay transactions until a non-censoring functionary is the
round leader. If N > %, blocks will only be able to be produced by the colluding
N functionaries. This attack is easier to perform than blocking other transac-
tions since the introspection opcodes used require transactions to be unblinded,
thus it becomes possible for functionaries to know the purpose of a transaction.

22

	Options
	Elements Introspection Opcodes
	Limit Order Example
	Covenant Example

	Miniscript Extensions
	Options Workflow
	Options Creation
	Option Funding
	Option Trading
	Option Cancellation
	Option Exercise
	Settlement Claim
	Option Expiry

	Covenant Definition
	Generator Covenants
	Collateral Covenant
	Cancellation Path
	Expiry Path
	Exercise Path

	Settlement Covenant

	Limitations and Risks
	Bugs
	Key Loss
	User Error
	Network Failure
	Asset Risk
	Partial Exercising
	Network Censorship

